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1. Introduction and conclusions

The fate of metastable vacua in field theory [1, 2] is of great interest in cosmology and

particle physics. The dynamics of their quantum decay toward the true vacuum rely on

the knowledge of the classical Euclidean “bounce” solution. The study of finite energy

soliton solutions in Minkowski space and of finite action solutions in Euclidean space is

therefore crucial for the study of metastable vacua. The purpose of this paper is to study

the generalization of this problem in the case of vacua generated by a scalar field living in

a higher-dimensional spacetime, with a scalar potential localized in four dimensions. The

field is therefore free in the bulk, with the scalar potential generating non-trivial boundary

conditions. One of our main motivation for studying the case of a boundary potential is

the generalization to supersymmetric theories with metastable vacua [3, 4]. In this case,

constraints coming from higher-dimensional supersymmetry are such that it is much easier

to construct models with localized (as opposed to bulk) superpotentials. Another important

motivation for our work is that in brane-world models, the stabilization mechanism of

the extra dimension is often achieved thanks to a bulk scalar field with brane-localized

potentials [5]. Generically, for a given choice of brane potentials, there can be multiple

solutions to the stabilization problem, corresponding to different vacua of the theory. In

these cases, it is important to explore their stability with respect to quantum tunnelling,

and to estimate the decay rate of the metastable vacua. In the present paper we will not
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consider this aspect of the problem: we take the geometry as fixed, and do not dscuss

the dynamics of stabilization of the extra dimension. We leave for future investigation the

situation in which the bulk scalar subject to vacuum tunnelling is also the same one that

stabilizes the size of the extra dimension.

The search for classical solutions in this case turns out to be very interesting and

rich. A first question is the dependence of the classical solution on the geometry of the

internal space, flat or warped, and on its size. In the case of the bounce, we would like

to understand the dependence of the width of the wall in the thin wall approximation

on the extra dimension. Moreover, since all nontrivial dynamics is encoded in boundary

conditions, it suggests that the problem could be tractable to some extent even in the case

where the internal space is warped. In this last case, there are several interesting questions

arising. First of all, even if we are in a regime in which the 4d effective theory is valid, i.e.

there is a mode much lighter than the KK masses, it is possible that the barrier separating

the false from the true minimum is much higher than the mass of the lowest-lying KK

states. In this case, despite the validity of the 4d effective action describing the lightest

mode, there is no a priori reason why the classical solution should be the standard 4d one.

Secondly, it is reasonable to expect that by placing the term lifting the degeneracy between

the true and the false vacuum into a deeply warped region, it will be redshifted to small

values, thus increasing indefinitely the lifetime of the false vacuum. If this were indeed

possible, there would be no practical difference between living in the true vacuum or the

false vacuum ! In this paper, we will be able to answer some of these questions, whereas

other questions will be addressed only partially and will need future work for a complete

understanding.

The plan of the paper is as follows. In section 2 we discuss vacuum decay in a toy-model

consisting of a single scalar field in a spacetime with one flat, compact extra-dimension.

We show that when there is a light (compared to the KK scale) mode, the effective theory

is precisely the one which admits a standard kink solution. We then work out the 5d analog

of the classical 4d field equation. This can be written as a 4d differential equation, which

allows a systematic calculation of the corrections to the 4d kink solution. The equation

involves a differential operator containing higher derivative terms. We work out the size

of the kink in the large radius limit, show that the kink becomes broader with increasing

radius and study its behavior near the origin. We use this to write the equation defining

the euclidian bounce and check the validity of the thin wall approximation, finding that it

gets worse in the 5d limit.

In section 3 we perform the same analysis including the effect of the warping of the

extra-dimension. We find that the 4d limit and the thin-wall approximation become very

accurate because of the warping. However Coleman-de Luccia gravitational effects can

become important and even completely lock the decay of the false vacuum.

In section 4 we extend these considerations to the supersymmetric case. Motivated

by the D3/D7 brane realizations of the ISS model, we discuss the AdS5 version of the ISS

model [3], with ISS gauge group and quarks living on the UV boundary and the mesons

living in the 5d bulk. The meson-quark coupling is then localized on the UV brane, whereas

the mesonic linear term in superpotential is put on the IR boundary. We find that, due
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to the warping, the (mass)2 parameter is naturally redshifted to small values, whereas

metastable supersymmetry breaking becomes a non-local (in the extra dimension) effect.

This has again the net effect of increasing correspondingly the lifetime of the metastable

vacuum. We also analyze briefly the case where the whole superpotential is localized on

the UV brane and a light mode is achieved by adding a bulk mass term for the mesons

hypermultiplet. In this case mass scales are redshifted again due to a different effect, the

value of the mesonic wave function on the UV brane. Both examples have a natural 4d

holographic interpretation via the AdS/CFT correspondence.

Some technical details of the computations are left to three appendices.

2. Flat 4 + 1 dimensions

In this section we consider a massless scalar field in a 4+1 dimensional flat spacetime1 in

which the 5th direction (labeled by the coordinate y) extends between two rigid branes at

y = 0 and y = πR. The bulk action is that of a free massless field, all nontrivial potential

terms appearing on the boundaries:2

S = −1

2

∫

d4xdy ∂AΦ∂AΦ −
∫

d4x V0(Φ)|y=0 +

∫

d4x V1(Φ)|y=πR . (2.1)

The field equations and boundary conditions read:

∂2
yΦ + ∂µ∂µΦ = 0, (2.2)

∂yΦ|y=0 =
∂V0

∂Φ
, (2.3)

∂yΦ|y=πR =
∂V1

∂Φ
. (2.4)

2.1 The Kink

Consider the situation where the brane potentials are given by:

V0(Φ) =
λ

4

(

Φ2 − v2
)2

, V1(Φ) = 0 (2.5)

From eqs. (2.2), (2.4) we see immediately that there are two “vacuum” solutions Φ±(x, y) =

±v. One can ask whether there exist a solution interpolating between the two vacua,

analogous to the four-dimensional domain wall (kink) that one finds with the same quartic

potential (see appendix A).

Notice that, since Φ is canonically normalized in 5D, and has mass dimension 3/2, the

parameters in (2.5) have unusual mass dimensions:

[λ] = M−2, [v] = M3/2. (2.6)

1We use signature (− + + + +). Throughout the paper we consistently neglect the backreaction of the

scalar field on the geometry [5, 6].
2The case of the bulk potential and the kink solution in the extra coordinate did lead historically to the

first brane world proposals [7]. For bounce solutions for brane localized fields, see e.g. [8].
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2.1.1 Effective 4D theory

A kink-like solution is expected to exist at least in a certain region of parameter space,

where one can give a four-dimensional effective description of the model. To see this,

consider the linearized fluctuations around one of the two vacua (say Φ−):

Φ(x, y) = −v + δΦ(x, y). (2.7)

Decomposing the solution in eigenstates of the 4D D’Alambertian, δΦ(x, y) = φ(y)χ(x),

¤4χ(y) = m2χ(y), the mass spectrum is obtained by linearizing the boundary condi-

tions (2.3), (2.4):
[

∂yΦ = µ2
0Φ

]

y=0
, [∂yΦ = 0]y=πR (2.8)

where µ2
0 = 2λv2. The mass eigenstates are the solutions of the equation:

m tan mπR = µ2
0 (2.9)

and the profile wave-function for a given mode of mass m is:

φm(y) = cos[m(y − πR)]. (2.10)

We have a low-energy, 4D effective theory for the lowest-lying mode (of mass m0) if m0R ≪
1. This description is valid for energies much smaller than the mass of the next KK mode,

which is of order 1/R. Under this conditions we can expand the tangent in eq. (2.9) and

obtain:

m2
0 ≃ µ2

0

πR
=

2λv2

πR
(2.11)

and the condition for the existence of a 4D description reads, in terms of the original

parameters of the model:

2Rλv2 ≪ π . (2.12)

Under these condition, inserting Φ(x, y) = −v + φ0(y)χ0(x) in the original action and

integrating over y, we obtain the low-energy 4D effective action for the lowest-lying mode

χ0(x). After some integration by parts and using the bulk field equation we obtain:

Seff =

∫

d4x

[

−1

2
∂µχ0∂

µχ0 − Veff(χ0)

]

(2.13)

where the effective potential is:

Veff =
m2

0

2
χ2

0 −
g

3
χ3

0 +
h

4
χ4

0; (2.14)

m2
0 ≃ 2λv2

πR
, g =

3λv

(πR)3/2
, h =

λ

(πR)2
. (2.15)

The extra factors of πR in the effective parameters come from the normalized wave-function

profile φ0(y) = (1/
√

πR) cos m0(y − πR) evaluated in y = 0. It is easy to check that

the potential (2.14) has two zero-energy minima at χ0 = 0, 2v
√

πR and a maximum at

– 4 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
7

χ0 = v
√

πR with V (v
√

πR) = λv4/4. In terms of the original field Φ = −v + φ0χ0 these

correspond exactly to the original two minima at Φ = ±v and maximum at Φ = 0.

Due to the standard double-well form of the effective potential the field equation de-

rived from the effective action (2.13),

∂2
xχ(x) =

∂Veff

∂χ
(2.16)

admits a kink solutions interpolating between the two vacua χ0 = 0 and χ0 = 2v
√

R, which

according to eqs. (A.2), (A.3) has the form:

χkink(x) = v
√

πR (1 + tanh µx) , µ2 =
h

2

(

v
√

πR
)2

=
µ2

0

4πR
=

λv2

2πR
. (2.17)

The kink energy density is of the order of the height of the potential barrier, λv4. In

order for the solution we found to be reliable, this energy density must be below the KK

scale, we thus have the additional requirement λv4 ≪ 1/R4. This, together with (2.12),

sets the range of validity of the kink solution we found. A sufficient condition is:

v ≪ R−3/2, λ ≪ R2. (2.18)

Although the energy density of the domain wall is R-independent, the integrated total

energy is not:

E =

∫ +∞

−∞
dx

(

dχkink

dx

)2

∼ v2 πR µ =
√

λπR v3 (2.19)

2.1.2 The 5D equation

The argument of the previous subsection suggest that a kink solution to the model (2.1)

should exists, at least in the range of parameters satisfying (2.18). Now we want to look for

similar solutions from a purely 5D perspective, without having to rely on the 4D effective

theory approach.

Let us return to eqs. (2.2), (2.4). We look for solutions depending on y and one of the

Minkowski coordinates (say x). The most general (real) solution to (2.2) can be written

as:

Φ(x, y) = g(x + iy) + (g(x + iy))∗. (2.20)

The boundary condition at y = πR tells us that

Im
[

g′(x + iπR)
]

= 0, (2.21)

where a prime denotes derivative w.r.t. the argument. This equation is satisfied if F (x) =

g(x + iπR) is a real function.3 This also implies that, for z complex, (F (z))∗ = F (z∗).

3That is, g(z) has an expansion of the form

g(z) =
X

cn(z − iπR)n

with real coefficients cn.
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Next, consider the boundary conditions at y = 0. Defining f(x) = Φ(x, 0), h(x) =

∂yΦ(x, 0), eq. (2.3) reads:

h(x) = λf(x)
[

(f(x))2 − v2
]

. (2.22)

Formally, we can write:

f(x) = g(x) + g(x)∗

= F (x − iπR) + F (x + iπR)

=
(

exp[−iπR∂x] + exp[iπR∂x]
)

F (x), (2.23)

h(x) = ig′(x) − ig′(x)∗

= iF ′(x − iπR) − iF ′(x + iπR)

= i
(

exp[−iπR∂x] − exp[iπR∂x]
)

∂xF (x)

= tan(πR∂x)∂xf(x). (2.24)

Using the last line in eq. (2.24) we arrive at a closed equation4 for f(x):

tan(πR∂x) ∂xf = λf
[

f2 − v2
]

. (2.26)

Another, maybe less general way, in order to arrive at (2.26) is to start from the bulk

solution

Φ(x, y) =

∫

dp ap epx cos(py + αp) , (2.27)

where ap (αp) are arbitrary coefficients (phases). Boundary conditions at y = πR fixes

αp = −p πR, whereas boundary conditions in y = 0 gives by a straightforward com-

putation (2.26), by using the replacement p → ∂x. This method will generalize in a

straightforward manner to the warped case discussed in the next section.

A solution to (2.26) gives f(x) = Φ(x, 0), which can then be extended into the bulk to

a full solution:

Φ(x, y) = Re[f(x + iy)] + tan(πR∂x)Im[f(x + iy)]

= [cos y∂x + (tan πR∂x)(sin y∂x)] f(x) . (2.28)

Eq. (2.26) has various interesting properties. It should be understood as a series in

derivatives of increasing order. If we take f(x) to be a 4D mass eigenstate, f(x) = emx,

and linearize the r.h.s, we get back to the eigenvalue equation (2.9). So the information

about the spectrum of the model is contained in (2.26).

4As for the standard kink, this equation can be obtained from a the point-particle analog model, with

potential −V (f) and an exotic kinetic term:

S =

Z

dx

»

V (f) −
1

2
f tan(πR∂x)∂xf

–

, (2.25)

which is the same as the “effective action” whose variation gives (2.26).
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Now suppose that we can keep the lowest order in the expansion of the l.h.s. (for any

given solution we can later check whether this approximation is justified). We get a second

order equation for f which looks exactly as the one for the 4D kink:

∂2
xf =

λ

πR
f

[

f2 − v2
]

(2.29)

whose solution is again given by eq. (A.3):

f(x) = v tanh µx, µ2 = λv2/(2πR). (2.30)

Notice that the characteristic scale µ is the same as in eq. (2.17).

We can extract considerable information from eq. (2.26) even when the 4D limit does

not hold. Consider a solution f(x) that approaches ±v as x → ±∞. We can estimate the

width of the kink by expanding f(x) = −v + η(x) and solving the linear equation for η

in the asymptotic large |x| region: assuming η(x) ∼ e−|x|/lw , where lw is a measure of the

wall width, we find:
1

lw
tan

(

πR

lw

)

= 2λv2 . (2.31)

In the 4D limit we get the expected result, namely lw = 1/µ, with µ as in (2.30). In any

case, the size of the wall cannot exceed 2R, and this value is approached in the opposite

limit, when Rλv2 ≫ 1.

Another interesting length scale is the one corresponding to the regime of the validity

of the linear slope of the solution f(x) ∼ (1/l0)x, when the variation (derivative) of the

field f is maximal.5 This can be estimated by linearizing eq. (2.26) around f = 0. Setting

f(x) = η sin(x/l0), with η a constant, we find:

1

l0
tanh

(

πR

l0

)

= λv2 . (2.32)

In the 4d limit we get as expected l0 ∼ 1/µ, whereas in the 5d regime we get l0 ∼ (1/λv2).

In the 5d limit therefore, the size of the kink becomes larger and larger, whereas large

variations of the field are confined into a fixed region.

We can put eq. (2.26) in integral form. Going in Fourier space, and using the identity

∫

dk
eikx

k tanh k
= − log[sinh |πx/2|], (2.33)

and f(0) = 0, we obtain:

f̂(u) =
1

2π

∫

dt log

[

sinh

∣

∣

∣

∣

u − t

2Rλv2

∣

∣

∣

∣

]

f̂(t)(f̂(t)2 − 1) (2.34)

where we have defined f̂(u) ≡ v−1f(u/(λv2)). Since the kernel in (2.34) behaves as |x − t|
for large t, f(t) must necessarily approach one of the extrema f = 0,±v as t → ±∞.

5In the usual d + 1 kink solution (A.3) both lw and l0 are of order 1/µ.
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It is also of interest to find the generalization of eq. (A.4) which expresses the vanishing

of the “energy” of the point particle analog system. The determination of this quantity

turns out to be non-trivial. The details of the calculation are relegated to the appendix

where we show that the kink verifies the following equation

E =
1

2

tan(πR∂)

πR∂

[

(∂f)2 − (tan(πR∂)∂f)2
]

− 1

πR
V (f) = 0. (2.35)

The leading terms in the expansion in powers of R are

1

2
(∂f)2 − 1

πR
V (f) + · · · = 0. (2.36)

They reproduce the 4D equation (A.4). The first order correction to the 4D equation of

motion can also be simply obtained:

1

2
[(∂f)2 +

1

3
(πR)2(2∂3f∂f − (∂2f)2)] − 1

πR
V (f) = 0. (2.37)

If we expand f in powers of R and write f = f0 +(πR)2f2 + . . . , then f2 can be determined

from the first order equation:

f ′
0f

′
2 −

1

πR
V ′(f0)f2 +

1

6
(2∂3f0∂f0 − (∂2f0)

2) = 0, (2.38)

where f0 is the 4D solution v tanh µx. Using the zeroth order equation of motion f ′′
0 =

1
πRV ′(f0) the solution can be written as

f2(x) =
f ′
0(x)

6

∫ x

0
du

((∂2f0)
2 − 2∂3f0∂f0)

(∂f0)2
, (2.39)

where the integration constant was fixed by requiring f2 to be odd. Finally the integration

can be done to yield

f2(x) =
1

6
f ′
0(x)

[

− 2λ

πR
v2x + 4

√

2λ

πR
f0(x)

]

. (2.40)

Explicitly, the solution to the first nontrivial order reads

f(x) = v tanh(µx)

[

1 − (2πRµ)2

6 cosh2 (µx)

(

µx

tanh(µx)
− 2

)]

. (2.41)

This shows that the zeroth order approximation is valid as long as (2πRµ)2 is much smaller

than one.

The identification of the kink as a solution of the equation E = 0, has an important

consequence: such solutions can never cross the lines f = ±v. This is analog to the usual

two-derivative kink: there, eq. (A.4) implies that f = ±v are the fixed points fot the

first order flow of the quantity Φ, and as such they cannot be crossed in finite “time.”

The corresponding statement in the case of eq. (2.35) is prooven in appendix (C). As an

important consequence of this fact, the (true) energy of any solution interpolating between

+v and −v is always positive, as we will see in the next subsection.

Another useful form of E is obtained by using the equations of motion (2.26) in (2.35)

to put it in the form

E =
1

2

tan(πR∂)

πR∂

[

(∂f)2 − (V ′(f))2
]

− 1

πR
V (f) = 0. (2.42)

– 8 –
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2.2 The bounce

Next, we add a linear potential on the brane at y = πR, of the form

V1 = b(Φ − v), [b] = M5/2. (2.43)

In this case, eq. (2.26) becomes:

tan(πR∂x) ∂xf − b = λ f
[

f2 − v2
]

. (2.44)

The addition of (2.43) breaks the Φ → −Φ symmetry and lifts the degeneracy between

the two vacua, making one of them metastable. We will follow Coleman [1] and estimate

the decay rate of the metastable vacuum. We look for a “bounce” solution ΦB(y, tE , ~x),

i.e. a solution of the Euclidean field equations that interpolates between the true vacuum

at small ρ ≡
√

t2E + |~x|2, and the false vacuum at large ρ. The bounce must have finite

action relative to the false vacuum. Then the tunneling amplitude is given by:

Γ = exp
{

−SE[ΦB ] + SE[ΦF ]
}

. (2.45)

Here SE[Φ] is the euclidean version of the action (2.1) evaluated on the field configuration

ΦB (the bounce) and ΦF (the false vacuum).

We look for a bounce solution with O(4)-symmetry, i.e. depending only on y and on

the Euclidean radial coordinate ρ. The euclidean field equation in these coordinates reads:

∂2
yΦ + ∂2

ρΦ +
3

ρ
∂ρΦ = 0 (2.46)

∂yΦ|y=0 = λΦ(Φ2 − v2), (2.47)

∂yΦ|y=πR = b. (2.48)

and we look for a solution that approaches the true vacuum ΦT at ρ ≃ 0 and the false

vacuum ΦF at ρ ≃ ∞. Following Coleman, we consider the symmetry breaking term as

a perturbation: we approximate both the true and the false vacuum to be the same as

the unperturbed ones (Φ(x, y) = ±v), and moreover we set b = 0 when solving the field

equation. As a further approximation, we assume we are in the “thin wall” limit, in which

we can neglect the last term in eq. (2.46). This is justified when the transition between

the true and false vacuum takes place in a in a small region of width lb around a radius

ρ0 ≫ lb. Under these assumptions, the problem reduces to the one of the previous section,

i.e. finding a domain wall solution centered around ρ0:

ΦB(ρ, y) =











−v 0 < ρ ≪ ρ0,

Φkink(ρ − ρ0, y) ρ ≃ ρ0

v ρ ≫ ρ0,

(2.49)

Requiring that the bounce has minimal action provides a variational problem for the

parameter ρ0. The bounce action is:

Sb

2π2
=

∫ πR

0
dy

∫

dρρ3 1

2

[

(∂ρΦ
B)2 + (∂yΦ

B)2
]

−
∫

dρρ3
(

V0(Φ
B(ρ, 0)) − V1(Φ

B(ρ, πR))
)

.

(2.50)

– 9 –
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Integrating by parts the bulk piece and using the field equations the above expression

reduces to boundary terms. Approximating the solution as in (2.49), we obtain:

Sb

2π2
≈ −2bv

ρ4
0

4
+ ρ3

0Swall . (2.51)

Here, Swall is the energy stored in the wall. In our approximation can be thought as

concentrated in a small region around ρ0, and can be approximated by the total energy of

the kink, i.e. the solution of eq. (2.26):

Swall ≃
∫ +∞

−∞
dx

(

V (Φ) − 1

2
Φ

dV

dΦ

)

y=0

=

∫ +∞

−∞
dx

λ

4

(

v4 − f4
kink(x)

)

. (2.52)

In the 4D regime, in which eqs. (2.29) and (2.30) hold, then after an integration by

parts we obtain:

Swall = πR

∫ +∞

−∞
dx (∂xfkink)

2 =
4

3
πR µ v2 =

4

3

√
πRλv3 (2.53)

Using this result in eq. (2.51) and minimizing the action with respect to ρ0 we find:

ρ0 ∼ Swall

bv
∼

√
πRλ

v2

b
(2.54)

and the thin wall approximation holds if

1 ≪ µρ0 =
λv3

b
(2.55)

which is the same condition [1] finds in the purely 4D case, and that we would have obtained

had we started from the 4D effective action in section 2.1.1.

From the previous discussion, it is clear that the thin-wall approximation gets worse

and worse as we move away from the 4D regime, i.e. as Rλv2 becomes large. In fact, as

discussed earlier, from eqs. (2.31) and (2.32) it follow that for Rλv2 ≫ 1 the width of the

wall becomes much larger than the size of the region where the field profile has its largest

variation (i.e. close to the f = 0), therefore the wall energy density gets spread over a

larger and larger region.

3. The warped case

We are now going to repeat the steps in the previous section in a slice of AdS5 bounded

by two branes at y = 0, πR. We parametrize the metric as:

ds2 = dy2 + e−2kyηµνdxµdxν . (3.1)

We will always assume a large warping, exp[kπR] ≫ 1.

The field equation is

∂2
yΦ − 4k∂yΦ + e2ky∂2

µΦ = 0 . (3.2)
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with the same boundary conditions as before. The general solution for a mass eigenstate,

¤4Φ = m2Φ, has the form:

Φm(y) = e2ky B2

(m

k
eky

)

(3.3)

where Bν(x) = amJν(x)+bmNν(x) is an appropriate combination of Bessel functions, whose

coefficients are to be determined along with the mass eigenvalues m, from the boundary

conditions (2.3), (2.4). The correct linear combination is:

Bν(x) = Jν(x) − J1(mekπR/k)

N1(mekπR/k)
Nν(x), (3.4)

and the resulting equation for the KK masses is:

m
B1(m/k)

B2(m/k)
= µ2

0 . (3.5)

Typically the lowest KK mass is of order:

mkk ∼ ke−kπR. (3.6)

If we are in the 4D regime, when the lowest mode has mass m0 ≪ mkk, expanding the

Bessels in (3.5) we find:

m2
0 ∼ 2kµ2

0

(1 − e−2kπR)
(3.7)

so the 4D regime demands that

λv2 ≪ ke−2kπR . (3.8)

In this 4d regime, the wave function of the zero mode is basically flat, whereas the

Φ → −Φ symmetry breaking term is redshifted by the warp factor b → b exp(−4kπR).

The 4d Coleman expression for the bounce action is therefore valid and produces a huge

enhancement of the lifetime of the false vacuum compared to the unwarped case. This is

one of the main advantages in constructing metastable vacua in warped spaces.

However, it would be very interesting to also understand the opposite regime, namely

when µ2
0 = λv2 is much larger than the KK scale. Notice that in this regime the mass

eigenstates are approximately given by the solutions of B2(m/k) = 0, since in this case the

l.h.s. of eq. (3.5) is large.

Let us now look for a kink-like solution, depending on the coordinates x and y. From

the flat case, we learned how to read-off an effective one-dimensional equation for the field

at y = 0 from the spectral equation. Repeating the argument that leads to (2.26), starting

from the general bulk solution with correct boundary condition at y = πR

Φ(x, y) = e2ky

∫

dp ap epx









J2

(

p

k
eky

)

−
J1

(

p
kekπR

)

N1

(

p
kekπR

)N2

(

p

k
eky

)









= e2ky
J2(

∂x

k eky) − J1(
∂x
k

ekπR)

N1(∂x
k

ekπR)
N2(

∂x

k eky)

J2(
∂x

k ) − J1(
∂x
k

ekπR)

N1(∂x
k

ekπR)
N2(

∂x

k )
Φ(x, 0) , (3.9)
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we obtain:
B1(m/k)

B2(m/k)

∣

∣

∣

m→∂x

∂xf = λf
[

f2 − v2
]

, (3.10)

where f(x) ≡ Φ(x, 0).

In the 4D limit we can take the first term in the expansion of the l.h.s. of eq. (3.10),

and we find again a second order equation, of the form:

∂2
xf =

2kλ

(1 − e−2kπR)
f

[

f2 − v2
]

(3.11)

which is the usual kink equation.

Let us estimate the width of the kink in the opposite regime, λv2 ≫ m2
kk/k. Using the

same argument as in the previous section, and writing f(x) = ±v + ηe±x/lw we find that

lw obeys:

l−1
w

B1(1/(klw))

B2(1/(klw))
= µ2

0, (3.12)

which comparing with eq. (3.5) means that the maximal width is equal to the inverse mass

of the lowest KK mode, i.e. of order (3.6).

Let us now add the linear term (2.43) on the IR brane, as we did in the flat case.

Making the same approximations as in section 2.2 (treat V1 as a perturbation, and use the

thin-wall approximation), we arrive at the following bounce action:

Sb

2π2
=

∫ πR

0
dye−4ky

∫

dρρ3 1

2

[

e2ky(∂ρΦ
B)2 + (∂yΦ

B)2
]

−
∫

dρρ3
(

V0(Φ
B(ρ, 0)) − e−4kπRb(ΦB(ρ, πR) − v)

)

≈ −2bv
ρ4
0

4
e−4kπR + ρ3

0Swall, (3.13)

where again we have assumed that ΦB(ρ, y) = ΦT (ρ, y) = −v for ρ < ρ0, ΦB(ρ, y) =

ΦF (ρ, y) = +v for ρ > ρ0, and ΦB(ρ, y) = Φkink for ρ ≈ r0. Notice the appearance of the

warp-factor in the first term of eq. (3.13) . Swall is the same as in eq. (2.52), and it is

localized on the brane at y = 0 (we are neglecting the subleading contribution from the IR

brane to the wall energy).

Minimizing eq. (3.13) with respect to ρ0 we find:

ρ0 ∼ Swall

bv
e4kπR (3.14)

and if Swall is not too small this leads to an exponentially large radius of the vacuum

bubble, and hence an exponentially small decay rate.

We can give a crude estimate of Swall as follows. Assume that fkink(x) can be approx-

imated piece-wise as:

fkink(x) ≈











−v x < −lw,
v
lw

x −lw < x ≃< lw
v x > lw

(3.15)
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Then evaluating the l.h.s. of (2.52) with this approximation we find

Swall ∼ lwλv4 ≃ λv4

k
ekπR (3.16)

In practice this may be an overestimate, since the linear regime assumed in (3.15) may not

be valid for the whole width of the wall. But we can say that Swall is larger than just the

contribution from the linear region:

Swall > Smin ≈ llinλv4 (3.17)

where llin is the region around the origin where the linear approximation (3.15) is justified.

It seems reasonable to believe that this region is independent of R for large enough R. In

the flat case this region is of the order µ2
0 = λv2 for large µ0. We can repeat the same

analysis of section (2.1.2) to estimate the slope of the solution near x = 0. Assuming a

behavior of the type f(x) ∼ sin(x/l0) we get the following equation:

i

l0

J1(
i

kl0
) − J1(

iekπR

kl0
)

N1( iekπR

kl0
)
N1(

i
kl0

)

J2(
i

kl0
) − J1(

iekπR

kl0
)

N1( iekπR

kl0
)
N2(

i
kl0

)

= −µ2
0 (3.18)

Now, let us assume that kl0 ≫ 1, so we can expand the Bessel functions evaluated in (kl0)
−1

(but not the ones evaluated in (kl0)
−1ekπR ). The quantity J1(ie

kπR/kl0)/N1(ie
kπR/kl0)

is never small, since J1(ix) has no zeros outside the origin. Using this fact, and expanding

the Bessel functions of argument (kl0)
−1 only, we obtain to lowest order:

1

kl20
≃ 2λv2. (3.19)

This result was obtained under the assumption kl0 ≫ 1, therefore it is valid if λv2 ≪ k.

This assumption is needed anyway, since we are in curved space, with a curvature scale of

order k, and we are neglecting the backreaction of the scalar field Φ on the background, as

well as the contribution of V (Φ) to the brane stress tensor.

Using l0 from (3.19) as an estimate of the width of the linear region, we get a a more

conservative lower bound on Swall from (3.17):

Swall >∼ l0λv4 =

√

λ

k
v3 (3.20)

up to O(1) coefficients. If this is the case the size of the bounce is:

ρ0 >∼

√

λ

k

v2

b
exp[4kπR] (3.21)

and the thin-wall approximation holds if

ρ0/lw ∼ v2
√

kλ

b
exp[3kπR] ≫ 1 , (3.22)
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which is easily satisfied due to the warp-factor. The decay rate is also exponentially sup-

pressed: plugging (3.21) into (3.13) we obtain:

Sb ≃
λ2v9

k2b3
exp[12kπR] (3.23)

which gives a huge lifetime τ = eSb even for moderate warping. This estimate shows that,

in the warped case, we don’t need to restrict to the 4-dimensional regime6 in order to have

a small vacuum decay rate.

There is an important omission in our previous discussion, the possible gravitational

effects on the creation of the bubble. Indeed, Coleman and de Luccia showed [2] in the 4d

context that gravitational effects are negligible only in the case

ρ0

Λ0
≪ 1 , (3.24)

where Λ0 is the radius such that the bubble radius equals the Schwarzchild radius. For

the 4d version of our model it equals Λ0 = (16GN bv/3)−1/2, where GN = 1/M2
P is the

4d Newton constant. In our case and when the 4d approximation is valid, the two length

scales scale with the warp factor as

ρ0 → exp[4kπR] ρ0 , Λ0 → exp[2kπR] Λ0 . (3.25)

Then, neglecting factors of order one, gravity effects on the creation of the bubble are

negligible when

exp[2kπR]
1

MP

√

λv5

b
≪ 1 . (3.26)

If the 4d limit (3.8) is satisfied but (3.26) is violated, as shown in [2], there are two different

cases. In the first, the metastable vacuum has positive energy whereas the true vacuum

where we live has zero energy. Then gravity effects increase substantially the probability

of tunneling. In the second case, the metastable vacuum has zero energy and tunnels

into a negative energy stable vacuum. In this case, gravity effects increase the lifetime

of the metastable vacuum. In the limit where ρ0 > 2Λ0 the bubble cannot form and

the metastable vacuum becomes completely stable. This becomes therefore one important

outcome of having a warped extra dimension, in the case where (3.25) is violated.

4. Supersymmetric extension: the AdS-ISS model

Recently, there was a renewed interest in metastable vacua from the point of view of

supersymmetry breaking [3], with further applications to gauge mediation models [12] and

moduli stabilization [13]. The proposal in [3] used the electro-magnetic Seiberg duality to

argue for the existence of metastable vacua in the supersymmetric QCD with a number of

flavors Nc + 1 < Nf < 3Nc/2. In the IR free magnetic description and before adding the

6As this regime demands that λv2
≪ k exp[−2kπR], this would impose a very strong constraint on the

model parameters. See however the next section for a different model.

– 14 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
7

effects of the (magnetic) gauge group, the model is described by the O’Raifeartaigh-type

model

W = hqΦq̃ − hµ̃2TrΦ , (4.1)

where qa
i (q̃j̄

b̄
) are the magnetic quarks (antiquarks), Φi

j̄
are the mesons, a, b = 1 · · ·N are

color indices and i, j = 1 · · ·Nf are flavor ones. Supersymmetry is broken by the “rank

condition”, in the sense that the supersymmetry condition

FΦ = hqq̃ − hµ̃2INf
, (4.2)

where INf
is the Nf ×Nf identity matrix, cannot be satisfied, since qq̃ is a matrix of rank

at most equal to N < Nf . One of the important requirements for the metastable vacuum

to be long-lived in the ISS model is ǫ ≡ µ̃/Λm ≪ 1, where Λm is the Landau pole of the

magnetic theory. From a string theory viewpoint [4], one natural realization of the ISS

model,in its magnetic description, is in terms of D3/D7 brane configurations, with the ISS

gauge group realized on the D3 branes, with (anti) quarks coming from the D3-D7 sector

and the magnetic mesons being the positions of a stack of D7 branes.

The purpose of this section is to analyze in a field-theoretical example the effect that

the warping of the internal space, generated by the branes, could have on the model. We

model this effect by considering a five-dimensional supersymmetric model in a slice of

AdS5 [9] with the metric

ds2
5 = e−2k|y|ηµνdxµdxν + dy2 , (4.3)

with ISS gauge fields and the quarks, antiquarks confined to the UV boundary y = 0

and the mesons promoted to a hypermultiplet (Φ1,Φ2) propagating into the 5d bulk, with

Z2 parities (+,−). The mesons-quark coupling is localized on the UV brane, whereas we

choose to put the linear term in the (Z2 even) mesons Φ1 in the superpotential on the IR

brane.7 As we will show below, due to the exponential warp factor, the mass parameter

µ̃ will be redshifted such that the lifetime of the metastable vacuum becomes arbitrarily

large. In a manifest 4d supersymmetric language [10, 14], the Lagrangean describing the

system is

S =

∫

d4xdy

{
∫

d4θ e−2ky(Φ†
1Φ1 + Φ†

2Φ2) +

∫

d2θe−3ky(Φ2∂yΦ1 + h.c)

+

[
∫

d4θ (q†q + q̃†q̃) +

∫

d2θ (hqΦ1q̃ + Wnp(Φ1) + h.c)

]

δ(y)

−
[
∫

d2θ e−3kπR( hµ̃2Φ1 + h.c)

]

δ(y − πR)

}

,

where Wnp is the non-perturbative mesonic superpotential arising in the field direction

where the mesons Φ1 get vev’s, give masses to the quarks (antiquarks) and generate the IR

dynamics restoring supersymmetry. The (metastable) supersymmetry breaking becomes

now a non-local effect and arises due to the impossibility, in the absence of Wnp, to solve

the supersymmetric condition:

e−2kyFΦ1
= −∂y

(

e−3kyΦ2

)

+ (hqq̃ + ∂Φ1
Wnp) δ(y) − e−3kπR hµ̃2INf

δ(y − πR) . (4.4)

7A geometrical construction in a string context, similar in spirit, was proposed in [18].
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In order to cancel the last term in eq. (4.4), the Z2-odd mesons Φ2 acquires a non-trivial

profile:

Φ2 = e3k(y−πR)(hµ̃2/2)INf
ǫ(y). (4.5)

If Wnp = 0 supersymmetry is broken: with (4.5), and using ∂yǫ(y) = 2[δ(y) − δ(y − πR)],

eq. (4.4) becomes:

e−2kyFΦ1
= δ(y)

[

hqq̃ − e−3kπR hµ̃2INf

]

, (4.6)

which cannot vanish due to the rank condition. Notice that the parameter which controls

supersymmetry breaking is not µ̃, but rather

µ2
eff = e−3kπRµ̃2 , since qq̃ = e−3kπRµ̃2IN . (4.7)

The presence of Wnp restores supersymmetry by producing sources which do add up

to zero. From the point of view of the bulk fields, in the metastable vacuum Φ1 gets a

boundary mass term

µ2
0 = h2〈q†q + q̃†q̃〉 = 2h2N e−3kπRµ̃2 , (4.8)

whereas in the supersymmetric vacuum it gets also localized nonperturbative interactions.

The formally divergent terms δ(0) in (4.4) do not appear in physical quantities, as shown

in various similar situations [11].

Notice the close analogy of this model with the toy model analyzed in section 3: the

symmetry breaking parameter is redshifted by a power of the scale factor. However in

this model the validity of the 4D limit is automatic, and does nor require an additional

fine tuning: the existence of a light mode for Φ1 requires µ2
0 ≪ k exp[−2kr] , and from

eq. (4.8) we see that this does not impose any strong constraint on h and µ̃, provided

the warp factor is large. Therefore, since the 4D limit analysis holds, the smallness of

the symmetry-breaking parameter due to the redshift leads immediately to an exponential

enhancement of the lifetime of the metastable vacuum. There is one critical point to check:

this conclusion is valid if the wave function of the lightest mode of Φ1 does not grow too

fast in the IR and destroys the redshift of the mass term µ̃, transparent in (4.4). In the

limit where the 4d effective theory is valid, i.e. the lightest mode is much lighter than the

KK masses m ≪ ke−kπR, its corresponding wave function reads approximatively

Φ
(0)
1 (y) ≃ d1 e4ky

[

1 − m2

12k2
e2ky

]

+ d2

[

1 +
m2

4k2
e2ky

]

. (4.9)

Boundary conditions determine then the mass spectrum to be given by the equation

−2m2e−2kπR =

(

µ2
0 −

m2

2k

)(

4k − m2

2k
e2kπR

)

. (4.10)

Due to the validity of the 4D limit, we get the 4D result (see section 3) m2 ≃ 2kµ2
0 and

a corresponding wavefunction (4.9) which is constant in y to the leading order. In this

case, the redshift of the mass parameter µ̃2 → µ̃2e−3kπR is effective and produces a huge

enhancement of the lifetime of the false vacuum. Notice that with respect to a 5d flat

metric, the light mode is actually localized on the UV boundary. Since the KK modes and
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the linear term are localized on the IR boundary, this explains the enhancement of the

lifetime of the metastable vacuum.

Another interesting case, with the same matter content, is when the whole superpo-

tential is localized on the UV boundary. In this case, there is no redshift of the mass

parameter µ̃ and generically no light mode. One way to obtain a light mode even in the

case ke−2kπR ≪ µ2
0 ≪ k is to add a bulk mass for the hypermultiplet, which is tuned

appropriately against the boundary mass. This is a tuning in a non-supersymmetric setup,

but the tuning is actually required and protected versus radiative corrections by super-

symmetry [14, 16]. In this case the bulk mass mb and the boundary masses µ0, µπ for the

scalar component of Φ1, in the false vacuum, are given by

m2
b

k2
= α2 − 4 =

(

c − 3

2

)(

c +
5

2

)

,

µ2
0 = h2〈q†q + q̃†q̃〉 +

(

3

2
− c

)

k ,

µ2
π = −

(

3

2
− c

)

k , (4.11)

where α = |c + 1/2|. Since we want to preserve in the first approximation the AdS5

geometry, we are interested in small backreaction of the scalar field and therefore small

bulk mass α ≃ 2. There is one interesting example of this type, with c = −5/2 and

therefore zero bulk mass for Φ1, with non-vanishing brane localized masses. In this case

we find a light scalar mode localized on the IR brane, with wave-function and mass given

by

Φ
(0)
1 (x, y) ∼ e−3kπRe4kyφ(x) ,

m2 ≃ 6kh2 〈q†q + q̃†q̃〉 e−6kπR . (4.12)

The term exp(−3kπR), important in what follows, comes from normalization of the 4d

kinetic term of the light mode φ(x). The four dimensional Lagrangean in this case is very

close to the 4d ISS Lagrangean. Auxiliary fields are

e−2kyFΦ1
= −∂y(e

−3kyΦ2) + (hqq̃ − hµ̃2 + ∂Φ1
Wnp)δ(y) ,

Fq = e−3kπRφq̃ ,

Fq̃ = e−3kπRqφ . (4.13)

Therefore, due to the wave-function in (4.12), the meson-quark coupling gets changed and

become

e−6kπR h2|φ|2
(

|q|2 + |q̃|2
)

. (4.14)

In the ISS vacuum, the quark vev’s are as in 4d

q = q̃T =

(

µIN

0

)

, (4.15)

Then (4.14) reproduces the light meson mode (4.12). In the SUSY vacuum in which

mesons get vev’s, quark masses are also redshifted by the same factor m2
q = m2

q̃ =
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exp(−6kπR)h2|φ|2. Therefore the distance in field space between the ISS and the SUSY

vacuum is greatly enhanced ∆φ = exp[3kπRN/(Nf − N)]∆φISS, whereas the barrier re-

mains unchanged Vpeak = Nfh2µ̃4. Therefore the bounce action Sb in the triangular ap-

proximation Sb ∼ (∆φ)4/Vpeak [15] and the lifetime of the false vacuum are accordingly

increased

Sb → e
12kπRN
Nf−N Sb . (4.16)

However, as discussed in the previous section, a more detailed analysis of gravitational

effects is needed in order to check if they are negligible. Again, if the metastable vacuum

has zero energy whereas the stable vacuum has negative one, one expects the lifetime to

be increased and eventually the false vacuum to become completely stable [2].

Notice that for values h2µ̃2 ∼ k and by defining the mass scale on the IR brane with

a dynamical scale Λ ≡ k exp(−kπR), we can rewrite qualitatively (4.12) in the suggestive

way

m ∼ Λ3

M2
P

, (4.17)

where MP is the 4d Planck mass. It is interesting to notice the analogy between (4.17)

and the scale of supersymmetry breaking in the observable sector in N = 1 supergravity

with a gaugino condensation 〈λλ〉 = Λ3 in a hidden sector, coupled gravitationally with

the observable one.

The models presented here can be interpreted from a holographic point of view. The

metastable susy breaking can be understood in a purely four-dimensional way as arising

from the infrared dynamics of a strongly coupled CFT sector, dual to the bulk geometry

and the bulk fields Φ1,2. This CFT acts as a hidden sector, coupled to the quarks living

on the UV brane. In the first example presented in this section (zero bulk mass), the light

mode mediating the vacuum decay is localized on the UV brane, and from the point of

view of the 4D theory it is a fundamental degree of freedom. The redshift of the mass

parameter µ̃ could be interpreted as the holographic version of the retrofitting discussed

in [17, 19]. In the second example, in which the bulk field profile is given by eq. (4.12), the

light mode is peaked on the IR brane and couples only gravitationally to the UV brane.

In both cases, in the holographic 4D theory description the symmetry breaking occurs as

an infrared effect, generating a hierarchy of scales like in eqs. (4.7) and (4.17)

In other types of models, in the nontrivial limit in which the boundary masses are large

and the KK modes are expected to play a role in the bounce, there is no light mode anymore

in the spectrum and the methods of section 3 are needed in order to estimate the lifetime of

the false vacuum. Finally, we would like to point out that there is nothing peculiar about

the ISS model from the point of view of a phenomenological construction in a 5d warped

space. Traditional O’Rafeartaigh models can be similarly discussed, with corresponding

mass parameters and consequently scale of supersymmetry breaking redshifted to very

small values. Since our main motivation was to understand the properties of the classical

kink and bounce solutions, we refrain ourselves to discuss further here these applications.
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A. Standard Kink solution

Here, we remind the reader of the standard domain wall, or kink, solution. Consider a

scalar field with quartic potential,

V (Φ) =
λ

4

(

Φ2 − v2
)2

. (A.1)

The one-dimensional field equation,

Φ′′(x) =
dV

dΦ
= λΦ(Φ2 − v2) , (A.2)

with boundary conditions Φ(−∞) = −v, Φ(+∞) = v is solved by:

Φkink(x) = v tanh µx, µ ≡
√

λv2

2
. (A.3)

This is also a solution of the first order equation:

E ≡ (Φ′)2

2
− V (Φ) = 0 . (A.4)

This can be read as the conservation of energy equation of a point particle moving in the

potential −V with vanishing total “energy” E .

The total energy of the kink is

E = 2

∫ ∞

−∞
dxV (Φ) =

2
√

2λ

3
v3 =

16

3
V (0)

1

µ
. (A.5)

B. Conserved energy

In this appendix we derive the conserved “energy”, eq. (2.35). We start from equation (2.26)

which we write in the form
∞

∑

n=1

an∂2nf − V ′(f) = 0, (B.1)

where the an are defined by tan(πRx) =
∑

n anx2n−1. Next we multiply (B.1) by ∂f and

use the following identity

∂f∂2nf =
1

2
∂

2n−1
∑

p=1

(−1)p+1∂pf∂2n−pf (B.2)
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to get

∂

[

1

2

∞
∑

n=1

an

2n−1
∑

p=1

(−1)p+1∂pf∂2n−pf − V (f)

]

= 0. (B.3)

We deduce the conserved quantity

πRE =
1

2

∞
∑

n=1

an

2n−1
∑

p=1

(−1)p+1∂pf∂2n−pf − V (f). (B.4)

Symbolically the sum
∑2n−1

p=1 (−1)p+1∂pf∂2n−pf can be written as

∂1∂2

∂1 + ∂2
(∂2n−1

1 + ∂2n−1
2 )f(x1)f(x2)|x1=x2=x, (B.5)

where ∂i = ∂xi
. The first term in (B.4) can thus be put in the form

∂1∂2

∂1 + ∂2
(tan(πR∂1) + tan(πR∂2))f(x1)f(x2)|x1=x2=x (B.6)

Now we use

tan(πR∂1) + tan(πR∂2) = [1 − tan(πR∂1) tan(πR∂2)] tan(πR(∂1 + ∂2)) (B.7)

and (∂1 + ∂2)
nf(x1)f(x2)|x1=x2=x = ∂nf2, which gives

tan(πR(∂1 + ∂2))f(x1)f(x2)|x1=x2=x = tan(πR∂)f2. (B.8)

Collecting all the terms we get the final expression

πRE =
1

2

[

tan(πR∂)

∂

]

[

(∂f)2 − (∂ tan(πR∂)f)2
]

− V (f). (B.9)

C. The 5D Kink near the extrema of the scalar potential

Here we analyze the behavior of the kink in flat space, close to the extrema of the potential,

f = 0,±v. In particular we show that a solution with zero “energy” E , i.e. satisfying

eq. (2.42), cannot cross from a region where |f | < v to another one where |f | > v.

We have already shown in section 2.1.2 that when f ∼ v the solution to eq. (2.26) is

exponential,

f ∼ v ± η exp[±x/lw],
1

lw
tan

(

πR

lw

)

= 2λv2 , (C.1)

where η is a constant. One can check that the above ansatz satisfies the condition E = 0

to lowest order in η: inserting (C.1) in (2.35) and keeping terms quadratic in η we obtain

(for any choice of signs in (C.1)):

E =
1

2

tan(πR∂)

πR∂

[

(±η

lw
e±x/lw

)2

−
(

tan(πR/lw)
±η

lw
e±x/lw

)2
]

− λv2η2

πR
e±2x/lw

=

{

1

2

tan(2πR/lw)

2πR/lw

[

1

l2w

(

1 − tan2(πR/lw)
)

]

− λv2

πR

}

η2e±2x/lw

=

{

1

lw
tan

(

πR

lw

)

− 2λv2

}

η2e±2x/lw

2πR

= 0,
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where in the last line we used the identity:

tan 2z =
2 tan z

1 − tan2 z
. (C.2)

Each solution of the type (C.1) approaches ±v as |x| → ∞. One can ask whether it is

possible for a solution to approach (and cross) |f | = v at a finite value x = x0. A priori,

one can take:

f ∼ v + η sinh[(x − x0)/lw] x ≈ x0 , (C.3)

as a solution to the linearized kink equation (2.26) with the desired property to cross f = v

at x = x0. However, let us compute the conserved energy for (C.3):

E =
1

2

tan(πR∂)

πR∂

[

(

1

lw
cosh[(x − x0)/lw]

)2

− (tan(πR∂)∂ sinh[(x − x0)/lw])2

]

η2

−λv2η2 sinh2[(x − x0)/lw]. (C.4)

We will use the following formal identity: for any differential operator Ô(∂) constructed

with a function O(k) which has an expansion containing only even powers of k, (such as

the two operators appearing in the above expression) we have:

Ô(∂) sinh kx = O(k) sinh kx, Ô(∂) cosh kx = O(k) cosh kx . (C.5)

Using this fact, and some manipulation of the hyperbolic functions, we arrive at:

E =

{

1

4l2w

(

1 + tan2

(

πR

lw

))

+
λv2

2πR

}

η2 > 0 , (C.6)

therefore a solution that crosses f = ±v cannot have a zero value of E .

On the contrary, a zero energy solution can cross f = 0 at some finite value of x. Close

to f = 0 the solution of the linearized equation has now the form (see eq. (2.32)):

f(x) ≃ η sin[(x − x0)/l0], tanh[πR/l0] = λv2l0, (C.7)

Inserting this in eq. (B.9) and performing the same steps that led to eq. (C.6) we obtain:

E =

{

1

4l20

(

1 − tanh2

(

πR

l0

))

+
λv2

2πR

}

η2 − λv4

4πR
. (C.8)

The last term is η-independent, and comes from the non-zero value of V (f) at f = 0. For

an appropriate choice of η, we can make E vanish:

η2 =
λv4

4πR

{

1

4l20

(

1 − tanh2

(

πR

l0

))

+
λv2

2πR

}−1

⇒ E = 0 (C.9)

Notice that this argument does not require η to be small: the validity of the linearized

approximation made in eq. (C.7) holds for arbitrary η, as long as x is close enough to x0.
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